
Distributed
 Computing

Data-Driven De-Anonymization in
Bitcoin

Master’s Thesis

Jonas David Nick

jonasd.nick@gmail.com

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Christian Decker

Prof. Dr. Roger Wattenhofer

August 9, 2015

Acknowledgements

I thank Christian Decker for his active support. Our weekly meetings shaped
the direction and were essential for the success of this thesis. I am especially
thankful for the encouragement during the course of the project. Christian gave
me access to his Bitcoin infrastructure which saved a lot of time and allowed me
to focus on the topic. Also, his continued advice greatly helped to improve my
academic writing and presentation techniques.

I thank Prof. Dr. Roger Wattenhofer for his feedback and providing the
resources to enable this research. In particular, without the SGE Arton cluster I
would not have been able to use 70,000 CPU hours and the scale of this project
would have been much smaller.

i

Abstract

We analyse the performance of several clustering algorithms in the digital peer-
to-peer currency Bitcoin. Clustering in Bitcoin refers to the task of finding
addresses that belongs to the same wallet as a given address.

In order to assess the effectiveness of clustering strategies we exploit a vulner-
ability in the implementation of Connection Bloom Filtering to capture ground
truth data about 37,585 Bitcoin wallets and the addresses they own. In addition
to well-known clustering techniques, we introduce two new strategies, apply them
on addresses of the collected wallets and evaluate precision and recall using the
ground truth. Due to the nature of the Connection Bloom Filtering vulnerability
the data we collect is not without errors. We present a method to correct the
performance metrics in the presence of such inaccuracies.

Our results demonstrate that even modern wallet software can not protect its
users properly. Even with the most basic clustering technique known as multi-
input heuristic, an adversary can guess on average 68.59% addresses of a victim.
We show that this metric can be further improved by combining several more
sophisticated heuristics.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Bitcoin Transactions . 2

1.2 Blockchain Privacy . 3

1.3 Related Work . 4

2 Address Clustering 5

2.1 Multi-Input Heuristic . 5

2.2 Shadow Heuristic . 5

2.3 Consumer Heuristic . 6

2.4 Optimal Change Heuristic . 6

2.5 Wallets . 7

3 Bloom Filter Attack 9

3.1 Bloom Filters . 9

3.2 Vulnerability . 11

3.3 Filter Collection . 12

4 Data Preparation 13

4.1 Duplicate Detection . 14

5 Evaluation 16

5.1 Metrics . 18

5.2 Legacy Wallets . 20

5.3 Modern Wallets . 22

5.3.1 Dealing with false positives 22

iii

Contents iv

5.3.2 Results . 26

6 Discussion 28

6.1 Mitigation . 29

7 Conclusion 32

Chapter 1

Introduction

Bitcoin is a peer-to-peer currency which maintains a global history of trans-
actions – the blockchain [Nak08]. Transactions are used to transfer bitcoins
between users with the help of asymmetric cryptography. We use the term Bit-
coin with a capital ”B” to denote the payment system and bitcoin to denote
currency units. Users of the system are represented by public keys and authorize
transactions using their private keys. They use software applications that are
called wallets and are mainly responsible for holding private keys and signing
transactions. Also, they often broadcast, receive and validate transactions.

The question we address in this project is about the privacy properties of
Bitcoin. Privacy is a natural requirement for a financial system which handles
sensitive payments like salaries, debts and medical bills. Neither the parties
involved nor the transaction value should be public information. An additional
prerequisite for a successful currency is fungibility. A bitcoin currency unit
should be substitutable for any other bitcoin and thus each bitcoin should have
the same value. For example, there have been reports that some bitcoins are
not accepted at certain exchanges because they have been allegedly involved in
criminal activity at some point of their history. Obviously, this problem can be
only solved with proper transactional privacy. It is evident that privacy aspects
have strongly shaped Bitcoin’s history and will continue to do so. Especially
in Bitcoin’s early days, online drug markets that use Bitcoin drove Bitcoin’s
adoption and as part of their advertising they claimed to be anonymous. On the
other hand regulatory agencies also attribute anonymity to Bitcoin and therefore
have a motive to enhance supervision.

However, Bitcoin’s original design was never intended to guarantee anonymity
and even privacy can only be achieved in narrow limits as previous research has
already shown. This publication further sheds light on the amount of information
an attacker observing the blockchain can obtain. Our contribution is the first
large-scale performance evaluation of several clustering strategies on the live
Bitcoin network. Clustering strategies attempt to determine which public keys
belong to the same persons using public information in the blockchain. With
that knowledge it is possible to identify the transactions of the person. In order

1

1. Introduction 2

-

U1 1

-

M1 .5
U1 1

U2 .5
M2 .6

U4 .4

-

U3 .5

U2 .5

U3 .5

Figure 1.1: Exemplary part of a transaction graph where nodes represent trans-
actions and edges connect an output with the transaction that spends it.

to quantify the harm that can be done to a user’s privacy in practice we collect
the public keys of 37,585 wallets. This data is used to evaluate the performance
of various clustering algorithms and shows that an attacker can learn 69.34% of
a wallet’s public keys.

1.1 Bitcoin Transactions

Transactions transfer values between entities that are represented by their public
keys, or pubkeys. Thus, one can think of pubkeys as account numbers in the
traditional banking system. The corresponding private key is used to prove
ownership of the account.

For example, assume there is a user with pubkey U1 and a balance of 1
bitcoin. This is represented in Bitcoin as a transaction moving 1 bitcoin to U1.
Now, the user wants to pay half a bitcoin to a merchant with pubkey M1. She
therefore creates a transaction that redeems a transaction output of a previous
transaction (Figure 1.1). An output is a tuple of a Bitcoin script and a value,
whereby the script specifies the condition for spending. The condition usually
consists of providing a valid signature for a pubkey, which requires access to
the corresponding private key. So, the balance of a user is the sum of values
of outputs she can provide the necessary conditions for. A transaction can be
understood as claiming outputs and creating new ones.

Accordingly, the user redeems her output by proving her ownership of U1

by including a signature over the complete transaction. The reference to the
spent output and the signature is the input of the transaction. In order to pay
the merchant, she adds an output to her transaction with pubkey M1 and the
value they agreed upon. Because a spent output can never be spent again, she
adds another output U2 to her transaction that sends the surplus value to a
new pubkey she created. This output is called change. The difference between

1. Introduction 3

the sum of inputs and outputs are fees that are going to be collected by Bitcoin
miners. Miners are responsible for ordering transactions and process transactions
quicker which have more fees per byte of serialized transaction.

Among other less relevant conditions, for a transaction to be valid the sum
of input values must exceed the sum of output values and the referenced out-
puts must not be previously claimed by any other transaction in the blockchain.
Additionally, the script evaluation has to succeed which in most cases requires
providing a valid signature.

One technical detail about transactions that will be important later is that,
initially, regular transaction outputs contained the plain pubkeys of the receiving
parties, whereas nowadays outputs usually only consist of the hash of a pubkey.
The former transaction output is called pay-to-pubkey, the latter is the newer
pay-to-pubkey-hash scheme. The only difference for the redeemer is then that she
has to provide signature and pubkey. A pubkey hash is usually communicated
in the form of a Bitcoin address, which encodes the hash, an address version
number and a checksum in base58. The terms address and pubkey are mostly
interchangeable for our purposes.

The example proceeds with the user wanting to pay a merchant M2 0.6
Bitcoin. With her pubkey U2 she has only 0.5 bitcoin available but luckily she
has a another spare output with 0.5 bitcoin. Because the transaction exceeds
the value of every single output the user can redeem, she has to create a so
called multi-input transaction. This transaction therefore contains signatures
for multiple pubkeys.

1.2 Blockchain Privacy

The fundamental problem of Bitcoin is that the sending pubkeys, the receiving
pubkeys and values of all transactions are publicly recorded in the blockchain.
An attacker that obtained the public key of a victim can scan the transaction
history and find a transaction the pubkey was involved in, which reveals the
sending and receiving party. On the other hand the link between real identities
and pubkeys is in general unknown. This is often referred to as pseudonymity.

If an attacker knows that a pubkey belongs to the user and the merchant
address is publicly known, she can conclude that the user paid the merchant.
Moreover, an attacker might not only find a single transaction with that pubkey
but the knowledge of the pubkey could reveal the whole transaction history of
the user. This is why users are strongly encouraged not to reuse their pubkeys,
but create a new key pair for each receiving transaction. However, in many cases
this is inconvenient for use cases such as publishing a tipping or donation address
or to use your pubkey for identification.

The possibility of creating a practically infinite number of pubkeys triggered

1. Introduction 4

research interest in the discipline of clustering. Given a pubkey, find pubkeys
that belong to the same user using the transaction history. There are several
ways to measure the success of a clustering strategy. We are concerned with
the precision and recall metrics. Precision is the number of correctly identified
pubkeys as a fraction of the total number of pubkeys found by the strategy. For
example, a precision of 0.5 means that half of the pubkeys found by the strategy
were correct and the other half were not. Recall is the number of correctly
identified pubkeys as a fraction of the total number of pubkeys that belong to
the wallet. A recall of 0.5 means that the strategy has found half of the wallets
pubkeys.

1.3 Related Work

Nakamoto [Nak08] already mentions a clustering technique we call multi-input
heuristic in his original Bitcoin paper. This heuristic is implemented in an open
source analysis framework [SMZ14] and has been studied by various research
groups [AKR+13, MPJ+13, OKH13]. Meiklejohn et al. applied clustering and
assigned names to clusters by interacting with various services and therefore
acquiring their addresses. Androulaki et al. [AKR+13] formulated a clustering
strategy called shadow heuristic. In order to estimate the success of clustering
they simulated participants of the Bitcoin network to generate transaction data.
They concluded that Bitcoin does not protect the privacy of its users sufficiently.

In contrast to previous studies, we capture actual data about consumer wal-
lets and their entire set of pubkeys. Then we cluster the collected pubkeys and
compute precision and recall using the ground truth. We think that analysing
real world data is superior to simulations because the clustering strategies are
very sensitive to the actual spending behaviour of the users. The data itself is
collected using a vulnerability that is discussed in detail in [GCKG14].

These attacks on privacy rely on Blockchain analysis and have to be dis-
tinguished from de-anonymization techniques that use the peer-to-peer network
[KKM14, BKP14].

Chapter 2

Address Clustering

The general idea behind clustering is to have a pubkey p from the set of all pub-
keys P and to apply a clustering algorithm h : P→ 2P to get a set of pubkeys that
are likely to belong to the same wallet. Then the clustering algorithm is applied
recursively to each pubkey in the set to get the complete cluster for p. Note that
there is no guarantee that the following clustering algorithms give useful results.
They merely exploit how typical wallet softwares create transactions, which is
why they are also called heuristics. To our knowledge, the consumer and optimal
change heuristic have not been used in academic research before.

2.1 Multi-Input Heuristic

This heuristic uses the fact that wallets are usually solely responsible for creating
transactions. If there is a transaction spending a victim’s output, an attacker
can conclude that the pubkeys of other redeemed outputs also belong to the
victim. In our example in Figure 1.1, if an attacker knows that address U3

belongs to the user, she could be quite certain that U2 belongs to the same
user. Therefore, the corresponding clustering algorithm hI(p) searches for all
transactions that redeem p and returns all pubkeys which are also redeemed in
the same transactions.

The success of this heuristic depends on the number and size of a wallet’s
multi-input transactions. For example, if a user usually receives small amounts
and sends large amounts there will be more multi-input transactions.

2.2 Shadow Heuristic

This heuristic exploits how most wallets handle change. These wallets generate
a fresh key pair for each change output and do not expose it to the user such
that a change pubkey is by default not used multiple times. Coming back to our
example in Figure 1.1 we assume that M1 is constantly used as the payments

5

2. Address Clustering 6

merchant address. We would not expect this for a change address, so U2 must
be the change ergo U1 and U2 are in the same wallet.

In detail, the heuristic algorithm hS(p) searches for all transactions where
p is redeemed. Then it returns for each transaction with two or more outputs
the unique change candidate if it exists. A shadow change candidate is pubkey
that appears at most in two transactions, of which one is a receiving and one a
spending transaction.

The success of heuristics that try to detect the change is dependent on the
recipient of the transaction. If a user’s wallet follows best practice and uses a
fresh change, the other party could reuse their pubkeys and therefore make the
change distinguishable.

2.3 Consumer Heuristic

In contrast to previous research on clustering we are only concerned with clus-
tering addresses from a consumer wallet. By consumer wallet we understand a
wallet that by default only allows to send bitcoins to a single address. Every pop-
ular wallet falls under this category, such as Bitcoin Core, Electrum, MultiBit,
Armory, Android Bitcoin Wallet, etc. A transaction generated by a consumer
wallet will always have one or two outputs. Therefore, we can make use of this
to find the change of a transaction.

The heuristic algorithm hC(p) searches for all transaction where p is re-
deemed. For each transaction it returns the consumer change candidate if it
exists and is unique. A consumer change candidate is a pubkey whose transac-
tions always have two or less outputs.

2.4 Optimal Change Heuristic

This heuristic is based on the assumption that wallet software does not spend
unnecessary outputs. In general, when a user requests to send a certain number
of bitcoins, her wallet searches for outputs it can spend in the transaction. The
transaction can only be valid if the sum of redeemed output values exceeds the
value the user intends to send. Furthermore, it should hold that when any of
selected outputs is omitted, the sum of the remaining outputs does not reach
the desired value. If this does not hold and such an output exists, the behavior
is suboptimal because spending it has no effect except increasing the size of the
transaction and therefore requiring more fees.

This implies that the change value is smaller than any of the spent outputs.
If the change was larger than one output then this output can be left out and the
change is reduced by the output’s value. If a transaction has a unique output

2. Address Clustering 7

with a smaller value than any of the inputs, it is very likely to be the true
change output, so we call it optimal change output. In the rightmost transaction
of Figure 1.1, for example, it is reasonable to think that U4 is the change address
because the associated value, 0.4 bitcoin, is uniquely smaller than both 0.5 bitcoin
inputs. If the 0.6 bitcoin output was the change then a wallet should have omitted
one of the inputs.

Similar to the other heuristics, the optimal change heuristic hO(p) searches
for all transaction where p is redeemed. For each transaction it returns the
optimal change output if it exists and is unique.

2.5 Wallets

Instead of trying to cluster every pubkey in the blockchain we only analyse a
subset of wallet implementations. Therefore, we can apply heuristics that exploit
specific wallet behaviors and would often fail when applied to a random key in
the blockchain. In order to assess the applicability of a clustering heuristic, we
have to understand some of the inner workings of the wallets we are dealing
with. It should become evident that we can not simply generalize the clustering
performance from one wallet implementation to another.

For example, the multi-input heuristic can be easily defeated by a mechanism
called a coinjoin transaction. It is in principle possible that a transaction has
been created by multiple parties which each sign for one pubkey and then send
the transaction to the next person. In its simplest form, the coinjoin works by
multiple users creating a single transaction. This is in conflict with the central
assumption of the multi-input heuristic. The multi-input heuristic would mark
every transaction input as belonging to the same wallet, which is clearly not
correct. Moreover, as long as the output values are the same all mappings from
input to output of a coinjoin are equiprobable. We could have attempted to de-
sign a heuristic to detect coinjoins but coinjoin transactions should be extremely
rare in the wallets we study. None of them perform coinjoins automatically or
at the users request. Rather, a user would have to export her private keys and
import it into specialized software, which have only a small number of users.
However, we can not exclude the possibility of coinjoins completely.

The process by which a wallet collects outputs to construct a transaction that
satisfies the given amount and fee requirements is called coin selection. There
are different variables a wallet can attempt to optimize during coin selection.
For example, the Bitcoin Core wallet tries to maximize the number of outputs a
transaction redeems and minimizes the change. Reducing the size of the unspent
outputs is favorable because this is the data that is replicated among all validat-
ing Bitcoin nodes. The BitcoinJ library on the other hand optimizes the fees a
transaction has to pay in order to be timely confirmed by the Bitcoin miners.

2. Address Clustering 8

The fees are dependent on the size of the serialized transaction and therefore
BitcoinJ’s objective is the opposite of Bitcoin Core’s unspent outputs minimiza-
tion. In general, these implementations follow a complex logic, which is not
guaranteed to give the optimal result because of the computational complexity
of the problem in question. In addition to implying that the clustering results
are very specific to a wallet implementation, this also means that the optimal
change heuristic might fail occasionally.

There are still legacy wallets in wide use, for example MultiBit, which do
not generate fresh change pubkeys. They use the first pubkey in the wallet as
the receiver of the change. This behaviour is clearly problematic from a privacy
perspective, because this key is going to be the input of many future transactions.
Also, it contradicts the expectation of the shadow heuristic which therefore can
not be applied.

In some newer wallets like Android Bitcoin Wallet 4, address reuse is discour-
aged by automatically creating and displaying a new address when they notice
that the current address received something. In other wallets such as Bitcoin
Core and MultiBit a user has to manually request a new address, which typically
results in more transactions with the same key.

We expect our heuristics to be quite precise – they will only rarely label
a pubkey as being in the wallet when in reality it is not. This is because the
heuristics are conservatively designed and specifically tied to the wallet software
so that the precision should in theory be perfect. However, the multi-input
heuristic fails when it encounters coinjoin transactions and the shadow heuristic
returns a wrong result if the wallet reuses a change address. Since the wallet by
itself never reuses the change and the address is not exposed in the user interface,
a user would have to find out her pubkey with manual blockchain inspection
which is unlikely to happen. In order for the consumer heuristic to return a
wrong result, the wallet software would have to be able to create transactions
with more than one recipient which is not possible in the wallets we are going to
discuss. The optimal change heuristic can indeed fail in a few cases even when
the wallet is normally used because coin selection may not be able to find the
optimal solution. The fraction of wallet pubkeys the clustering strategy returns,
the recall, on the other hand is mostly determined by the behavior of the users.
In particular, the recall is affected by the number of transactions, the number
of bitcoins the user usually receives and the number of bitcoins the user usually
spends.

Chapter 3

Bloom Filter Attack

Our approach to studying the real effect of clustering involves a collection of real
wallets, i.e. sets of pubkeys from the blockchain that belong to the same wallet.
We apply the heuristic and use the wallet data to measure the performance on
ground truth.

Getting the data is usually a nontrivial undertaking because users will not
deliberately give up their privacy and wallet software is expected to prevent
such privacy leaks by all means. We used an exploit for a wallet implementation
called BitcoinJ which allows to reconstruct all of its pubkeys after connecting
via the peer-to-peer network. The vulnerability lies in the application of Bloom
filters in Bitcoin’s network protocol and BitcoinJ’s specific implementation. In
this chapter we first give a short introduction to Bloom Filters and how they are
used in Bitcoin before we discuss the actual vulnerability.

3.1 Bloom Filters

A Bloom filter is a probabilistic data structure that is used to check whether an
element is a member of a set [Blo70]. The advantage of applying Bloom filters
is that they require less space than the full data set. The two operations on
Bloom filters are insert and query. Insert puts a piece of data into the filter and
a data query returns true if the data has been inserted before. Bloom filters are
characterized by their false positive rate which is the probability that a query
is positive although the element was never inserted into the filter. There is a
trade-off between the false positive rate and the size of the filter – the smaller
the acceptable false positive, the bigger the filter. On the other hand Bloom
filters never return false negatives, so an element put into the filter will always
be recognized as such.

Bloom filters are used in Bitcoin simplified payment verification (SPV) wal-
lets. In contrast to full nodes, SPV clients do not validate the whole blockchain.
Validation requires knowledge about every single transaction in the blockchain,
whereas SPV nodes can save bandwidth by requesting only the subset of trans-

9

3. Bloom Filter Attack 10

Figure 3.1: Sequence diagram of the Connection Bloom filtering protocol.

actions the SPV node is interested in. One mechanism to achieve that was sug-
gested in Bitcoin Improvement Proposal BIP 37 ”Connection Bloom Filtering”
[HC12] and subsequently implemented. The proposal introduces an extension to
the Bitcoin network protocol that uses Bloom filters to allow SPV nodes to learn
only about transactions that affect their balances. It works as follows (Figure
3.1):

The SPV node stores a Bloom filter that contains all pubkeys and hashes
of pubkeys of the wallet. Upon connecting to a full node, the SPV and full
node exchange initial handshake messages. Immediately afterwards, the SPV
node sends its filter through the connection. Whenever the full node receives a
transaction it queries the filter with parts of the transaction data. If there is a
match it relays the transaction to the SPV node which can then check if one of
its pubkeys is really of interest and potentially discards the transaction.

Using a Bloom filter instead of the trivial protocol which just sends all pub-
keys and pubkey-hashes to the full node has a disadvantage. It produces false
positives and therefore leads to unnecessary network communication. However,
using a Bloom filter is advantageous to the full note: the filter reduces the space
requirements and allows quick queries. Hence, Bloom filters also help the full
node to be more robust against denial of service attacks that target resource
exhaustion. More importantly, Bloom filters are intended to prevent leakage of
information about the wallet’s pubkeys. If the false positive rate is sufficiently
high, the large amount of possible data contained does not give an attacker sub-
stantial information about the actual data contained. But these privacy benefits
are achieved only at the cost of some wasted bandwidth. Therefore, the false
positive rate controls a bandwidth/privacy trade-off which has to be carefully
tuned.

At first glance, Connection Bloom Filtering appears to have attractive privacy
properties. For example, a common false positive rate for filters we see in the
Bitcoin network is 0.0146%, which enables acceptable performance on wallets

3. Bloom Filter Attack 11

including those connected via mobile networks. Further, this means that an
attacker querying the whole blockchain consisting of 60 million pubkeys would
expect 0.0146% · 60e6 = 8760 false positives. Most wallets truly contain only a
relatively small number of keypairs, so the attacker has only a small chance of
identifying a true positive among those 8760 positives.

3.2 Vulnerability

The attack targets the most used SPV wallet library that uses Bloom filters
called BitcoinJ, but there may be more vulnerable implementations.

The main issue is that BitcoinJ puts both pubkey and pubkey-hash into the
Bloom filter. This implies that if a pubkey is really owned by the wallet, both
pubkey and hash must be in the filter. Because these are independent events, an
algorithm that queries the filter with both and returns the logical AND, lowers
the false positive rate to its square. When applying this method to our previous
example with false positive rate 0.0146% we expect only 1.27 false positives when
scanning the whole blockchain. Therefore, an attacker can guess true positives
in the set of all positive pubkeys with high probability.

After reporting this issue to the developers of BitcoinJ, we thought about
possible fixes but the issues involved turned out to be quite complex. One might
suggest to increase the false positive rate such that even its square provides a
certain amount of privacy. But this would ramp up the bandwidth usage which,
according to the BitcoinJ maintainers, is not acceptable for their users. It is
reasonable to ask if it is really necessary that the BitcoinJ node inserts pubkeys
in addition to pubkey-hashes. If BitcoinJ would not insert pubkeys then the
wallet would not notice that it received a pay-to-pubkey transaction and BitcoinJ
naturally wants to remain compatible to all standard transaction types.

Even if this is somehow fixed there is another problem which occurs when the
filter gets dirty. A filter is dirty when a lot of additional elements are inserted
after the creation of the filter. Due to the inner workings of the Bloom filter, the
false positive rate increases as more elements are inserted and the bandwidth
costs become more and more significant. In order to match the desired false
positive rate, the filter has to be recomputed and send to the peers. An attacker
with two separate filters from the same wallet is able to remove false positives
by taking the intersection of both filters’ matches.

There are in fact a couple of additional problems in the Bloom filter protocol
that have no simple fixes1. It appears that substantial changes in the protocol
design are necessary to improve privacy. Unfortunately, this means that the
situation will not change soon.

1BitcoinJ developer Mike Hearn’s response to the vulnerability report: https://groups.

google.com/forum/#!msg/bitcoinj/Ys13qkTwcNg/9qxnhwnkeoIJ

https://groups.google.com/forum/#!msg/bitcoinj/Ys13qkTwcNg/9qxnhwnkeoIJ
https://groups.google.com/forum/#!msg/bitcoinj/Ys13qkTwcNg/9qxnhwnkeoIJ

3. Bloom Filter Attack 12

3.3 Filter Collection

We have seen how to get all pubkeys from the filter with only a small number of
false positives but we still need to collect a sufficient number from the Bitcoin
network. SPV wallets usually do not accept incoming connections. They ask
hard-coded seed nodes for random peers and open outbound connections to the
network addresses they learn about. Therefore, a crawler has to be picked up by
the seed nodes first.

Our implementation is written in the Go programming language and ex-
tensively uses the btcwire library2 for Bitcoin peer-to-peer communication. To
clearly state that it is not a regular node, the crawler uses the user agent string
”btcwire” in its application-layer handshake. When exchanging a handshake
with a seed node, a node needs to announce to relay blocks and to have more
blocks than a threshold in order to be reliably recognized by the seed. After be-
ing noticed by seed nodes the crawler waits for incoming connections and records
the message when it contains a filter. The connection is closed when a filter is
received or when two minutes pass to free resources on both ends.

Beginning with the 12th of December 2014, we connected custom nodes to
the Bitcoin peer-to-peer network and collected filters until we were satisfied with
the number of collected filters. Over time we successively added up to 20 nodes.
We ended the experiment at the 10th of February 2015 when 70,078 unique filters
were captured.

Interestingly, the number of filters collected per day varied strongly within
and between crawlers. Some crawlers received 0 to 20 filters every day, whereby
others consistently collected 50 to 600 filters daily. This shows that the seed
nodes selection of good peers is far from being uniformly random. At the end
of the experiment, the probability that the nodes suggested by a seed (ranging
from 21 to 27 at the time) include at least one of our crawlers was around 4.3%.

2btcwire package by Conformal: https://github.com/btcsuite/btcd

https://github.com/btcsuite/btcd

Chapter 4

Data Preparation

Using the collected Bloom filters we exploit their vulnerability to find actual
wallet pubkeys. The term match-set refers to the pubkeys we extract from the
filter and, accordingly, for each filter there is a match-set and an underlying
wallet. In order to find the match-sets we create a set with all pubkeys that
occur in the blockchain and use them to query each of the filters. When there is
a match for both pubkey and hash the pubkey is regarded to be in the wallet.

Instead of querying all pubkeys from the blockchain we only use the pubkeys
that were contained in the blockchain up to the moment of the collection of the
individual filter. We obtain the blockchain pubkeys by finding all pay-to-pubkey
or pay-to-pubkey-hash outputs and selecting the associated pubkey. Note that if
an output is pay-to-pubkey-hash, we can find its destination pubkey only when
it has been revealed by spending the associated output. Because almost all
transactions of our wallets are pay-to-pubkey-hash, we can not reconstruct the
current state of the user’s wallet. Only pubkeys that occur in outputs that have
been spent can be extracted from the filter. Our data set contains 60.88 million
pubkeys using the blockchain state at the 10th February 2015 – the date of the
collection of the last filter. We use the btcutil library1 to load the serialized filter
and query the set of pubkeys. This process takes approximately one hour per
filter on a single processor core.

Apart from the false positive pubkeys that match the filter even though they
were not put into the filter before, there are other reasons why our extracted
match-sets could differ from the real wallet. First, putting a foreign pubkey
into the filter allows tracking the balance of arbitrary addresses. This feature
is called watch-only addresses and is implemented in BitcoinJ, but none of the
actual wallet implementations we are going to analyse expose this feature in
their graphical user interface. Second, a wallet implementation might shard its
keys to multiple Bloom filters and send each peer a separate filter with only
a subset of keys. While theoretically possible, to our knowledge there is no
such implementation. Third, there could be nodes which deliberately broadcast

1btcutil package: https://github.com/btcsuite/btcutil

13

https://github.com/btcsuite/btcutil

4. Data Preparation 14

bogus filters to make Bloom filter analysis more difficult. However, in our view
the public awareness of the vulnerability was fairly small at the time of filter
collection. There is no protection against these issues other than considering
only a subset of known wallet implementations and limiting the influence a single
wallet can have on the final performance result. The only difference between
wallet and match-sets we can estimate are the false positives that stem from the
filter query, because we know the false positive rate of the filter.

At this point we have effectively obtained the match-sets from underlying
wallets, but still need to clean the data from experimentation artifacts. First,
we discarded all empty match-sets from the data set reducing its size to 55,111.
Then we removed what we view as duplicate wallets which brought the number
further down to 38,009.

As part of the initial handshake, clients exchange version messages containing
a user agent string that identifies the client software. The user agents in our
data are dominated by BitcoinJ-based software. Still, exact client versions were
quite diverse and suggest a lot of custom software. We discarded wallets which
did not present the user agent of a well known BitcoinJ wallet. So, we only
retained Bitcoin Wallet, MultiBit, KnC, Hive and Green Bitcoin Wallet.

There are some match-sets that are clearly outliers because they have an
enormous size, most likely caused by bugs or misconfiguration. Therefore, we
have to pick an arbitrary threshold to remove the exceeding match-sets. A
threshold of 1000 was considered suitable and affected 15 match-sets. Eleven
of them were from from MultiBit and one from Bitcoin Wallet 4. Two of the
wallets contained between 1000 and 2000 pubkeys, two contained between 2000
and 3000 and the rest had far more than 10,000 pubkeys. Finally, after outlier
removal we ended up with 37,585 wallets.

In the rest of this chapter we are going to review the duplicate detection step.

4.1 Duplicate Detection

Each filter has a nonce which makes the filter unique even when the same ele-
ments are inserted. It is likely that two filters with the same nonce were issued
by the same wallet. If two filters have the same nonce but a different content,
then new pubkeys have probably been added to the wallet and therefore also
to the filter. To account for that during the filter collection, we retained fil-
ters that had the same nonce but different content as an already existing filter.
Furthermore, it is also very likely that some of our filters belong to the same
wallets, even though they have a different nonce, size or content and thus also
show up multiple times in our collection. This can happen if the wallet software
restarts and generates a new filter with a fresh nonce. In order to improve the
quality of the data we want to find and remove such duplicate match-sets that

4. Data Preparation 15

have been issued by the same wallet. We apply a conservative approach which
means that we prefer to throw away overly many match-sets over having the
same wallet represented multiple times, which would bias the results. Therefore,
we use an algorithm that treats all pairs of match-sets that overlap as duplicates
and chooses to retain the one with the greater size because it is probably the
most up to date.

Assuming the absence of key sharding, this method has the property that if
two wallets are indeed duplicates it will also treat the match-sets as duplicates.
The converse is not true, because a false positive in querying the filter can make a
pair appear as duplicate. However, this does not harm our data, because we just
throw away more than necessary and the probability of this event is reasonably
small as the following calculation shows.

Denote a wallet and its corresponding match-set with wi and mi respectively,
which are both sets of pubkeys, and the false positive probability of the wallet
extraction Pr(p ∈ mi | p /∈ wi) with ϕ. Let P be the set of all pubkeys in
the blockchain and let ≈ be an equivalence relation for overlapping sets, so x ≈
y ⇐⇒ |x ∩ y| > 0. Then we have that Pr(¬(mi ≈ mj) | wi ≈ wj) = 0 because
as previously discussed Bloom filter queries do not result in false negatives. Also,
we have

Pr(mi ≈ mj |¬(wi ≈ wj)) = 1− Pr
(
|mi ∩mj | = 0

∣∣ |wi ∩ wj | = 0
)

= 1− Pr
(
∩p∈P¬(p ∈ mi ∧ p ∈ mj)

∣∣ |wi ∩ wj | = 0
)

= 1− (1− ϕiϕj)|P|−|wi|−|wj |

For example, with the size of P being around 60e6 and the common parameter
ϕ = 0.0001472 it holds that the probability for erroneous de-duplication per pair
is around 2.66× 10−8.

Chapter 5

Evaluation

At this point we have extracted a collection of match-sets, each corresponding
to a wallet, and can use this data to evaluate the performance of the previously
discussed clustering algorithms. Before we do that, we will have a more detailed
look at the data we have collected.

One of the most important steps in the data preparation phase is to select
only match-sets from well-known BitcoinJ wallets. But we have to look even
more closely and actually distinguish two types of wallets because they have
vastly different behaviors. The first type consists of wallet implementations using
recent versions of BitcoinJ. Their filters commonly have false positive rates very
similar to the previously assumed 0.0147%. We estimated the false positive rate
by querying ten billion distinct strings and computing the ratio of matches. The
second type uses older BitcoinJ versions where the false positive rate is negligible
and we expect virtually no false positives. Since this change was introduced in
BitcoinJ version 0.12, we call wallets using previous versions legacy wallets.

Legacy versions of BitcoinJ do not only have a much lower false positive
rate but they function fundamentally different. First, they use always the first
key in the wallet for the change output instead of a fresh pubkey. Second,
they do not encourage using a fresh pubkey for each receiving transaction –
a user has to manually request a new address. One of the effects is that the
distribution of the number of pubkeys differs considerably between legacy and
modern wallets. Figure 5.1 demonstrates that, in general, a modern wallet has
much more pubkeys. In order to produce the figure, the distribution of pubkeys
in modern wallets has been adjusted to incorporate false positives by subtracting
for each individual wallet the expected number of false positives from the size of
the match-set. Then we discarded match-sets with less than zero expected true
pubkeys and applied the ceiling function to the remaining counts.

Table 5.1 shows the number of distinct wallet implementations in the data.
We can see that Bitcoin Wallet for Android is by far the most common, followed
by MultiBit, while KnC, Hive and Green Bitcoin Wallet play only a minor role.
With the exception of Bitcoin Wallet 3, at the time, even the most recent versions
of the client software listed as legacy wallets use an outdated BitcoinJ library.

16

5. Evaluation 17

Figure 5.1: Distribution of the number of pubkeys in legacy vs. modern wallets.

Despite legacy wallets having the previously discussed critical privacy issues,
they still represent 21.6% of the data.

Another interesting aspect is the balance of the wallets we captured. It is
not possible to reconstruct the balance of modern wallets because their false
positive rate would lead to an unpredictable bias. There are some legacy wallets
which have a high false positive rate as well, so we select only wallets with
a false positive rate smaller than 0.001%. Because most wallets have a much
smaller false positive rate we expect no false positives in this selection, which
turned out to contain 7777 wallets. In total, the sum of bitcoins received by the
selected wallets is 321,825 with an average of 41 bitcoins. The distribution of
total received bitcoins can be seen in Figure 5.2. It shows that more than half of
the wallets received less than one bitcoin and the rest follows an extremely long
tail. The maximum value that has been received by a single is 62,560 bitcoins.

In the following we assume that an attacker knows if her victim’s wallet
software is legacy or modern. This information can be acquired via side-channel
information or in many cases simply by inspecting the blockchain. For example,
the attacker could search for all transactions that spend the victim’s outputs and
then check if these transactions always send to the same pubkey. This is likely
the change address of the victim’s wallet and therefore the victim is running a
legacy wallet.

We can not simply apply a clustering algorithm to a modern wallet because
our match-sets contain enough false positives to substantially bias the result.
Therefore, we will now first analyse legacy wallets, then learn how we deal with
false positives and examine modern wallets.

5. Evaluation 18

Table 5.1: Number of wallets per useragent

(a) Legacy wallets

Wallet Number

MultiBit 0.5.18 5621
MultiBit <0.5.18 1500
Bitcoin Wallet 3 619
Bitcoin Wallet <3 35
KnC 157
Hive 154
Green Bitcoin Wallet 38

total 8124

(b) Modern wallets

Wallet Number

Bitcoin Wallet 4.18 5859
Bitcoin Wallet 4.17 4071
Bitcoin Wallet 4.16 15796
Bitcoin Wallet <4.16 3735

total 29461

In order to efficiently query the blockchain we created two key-value databases
from the raw blockchain data. The first is an address index that maps an address
to the identifiers of transactions where that address appears. Second, we have
a transaction index that returns the transaction corresponding to a transaction
id. For each application of a clustering algorithm we use the blockchain state at
the moment of the filter collection. This prevents finding pubkeys via clustering
that legitimately stem from the wallet, but were not found during wallet extrac-
tion because they were only later added to the wallet. We completely ignore
inputs and outputs that do not follow the pay-to-pubkey or pay-to-pubkey-hash
standard such as pay-to-script-hash. Also, we do not make use of the sighash
flag, which could indicate a non-standard transaction that affects the clustering
strategies in a negative way.

5.1 Metrics

The function h : P → 2P denotes a clustering algorithm that maps a pubkey to
a set of pubkeys which are likely to belong to the same wallet. h can be viewed
as a binary classifier on the set of pubkeys which assigns positive to all pubkeys
in h(p) and negative otherwise. Thus, we can use standard metrics from binary
classification: precision and recall. We define that p /∈ h(p), so the result of the
clustering algorithm does not contain the input pubkey.

First, we want to compute the precision πh(p, w) of heuristic h on a pubkey
p of wallet w to determine the fraction of new pubkeys found via h that really

5. Evaluation 19

Figure 5.2: Distribution of total received bitcoins for a subset of legacy wallets.

belong to the wallet.

πh : P× 2P → Q

πh(p, w) :=
|h(p) ∩ w|
|h(p)|

Because p /∈ h(p) we choose to compute the precision only over the pubkeys
that were newly discovered with the heuristic. Otherwise, the result would be
systematically biased since p would always be contained in h(p) and w. This also
means that |h(p)| can be zero, so the precision is only defined for pubkeys for
which the heuristic returns a non-empty result. When averaging over the keys
of a wallet we get the per wallet precision πωh .

πωh : 2P → Q

πωh (w) :=
1

|τ(w)|
∑

p∈τ(w)

πh(p, w)

τ : 2P → 2P

τ(w) := {p : p ∈ w ∧ |h(p)| > 0}

The function τ filters the pubkeys of a wallet such that only pubkeys are kept
which have a defined precision. When averaging over all wallets we get a final

5. Evaluation 20

precision score Π for the full data set.

Πh : 22
P → Q

Πh(W) :=
1

|T π(W)|
∑

w∈Tπ(W)

πωh (w)

T π : 22
P → 22

P

T π(W) = {w : w ∈W ∧ |τ(w)| > 0}

If there are no pubkeys in the wallet with |h(p)| > 0 then the per wallet precision
is undefined. So, we need a function T to only include wallets in the average we
actually learn something from. Π can be interpreted as the probability that a
pubkey returned by the application of h on a uniformly random pubkey chosen
from a uniformly random wallet correctly belongs to the wallet.

The second metric is the recall ρh(p, w) which represents the fraction of pub-
keys of the wallet that are returned by the clustering algorithm h on p.

ρh(p, w) =
|(h(p) ∪ {p}) ∩ w|

|w|

ρωh(w) =
1

|w|
∑
p∈w

ρh(p, w)

Ph(W) :=
1

|W |
∑
w∈W

ρωh(w)

Note the subtle difference to the precision: for the recall it is more meaningful to
add the pubkey p we started with to h(p) because we are interested in the actual
fraction of pubkeys the attacker obtained after application of the heuristic. This
removes the need for a threshold filter τ that was used in the precision. Averaging
over all wallets yields the probability that a pubkey belonging to the same wallet
is returned by the heuristic.

5.2 Legacy Wallets

Legacy wallets are wallets that use a BitcoinJ version earlier than 0.12. They do
not use fresh change pubkeys and users have to manually request new pubkeys to
prevent address reuse. Applying the multi-input heuristic results in an average
precision Π of 90.79%, and an average recall P of 79.76%. It’s not surprising
to see that the precision is pretty large, because the heuristics are designed
conservatively and they are only applied to wallets the heuristics are made for.

Figure 5.3 shows the recall for different wallet sizes. It limits the x-axis to
wallets with 20 pubkeys because the amount of data with bigger wallet sizes is

5. Evaluation 21

Figure 5.3: Mean recall and standard deviation of the multi-input heuristic on
legacy wallets. The x-axis represents the number of pubkeys in the wallet.

not sufficient. The precision is not shown in the plot because it more or less
remains constant for all wallet sizes.

In order to have a reference point to compare the multi-input heuristic to,
we use a recall of 1/(wallet size) as a baseline. This represents the case when
no heuristic is applied, so the attacker does not find more pubkeys than the
single one she already has. The multi-input heuristic clearly beats the baseline
and, interestingly, the recall does not really decrease for larger wallets. This
can be explained by the general lack of fresh pubkeys in these wallets. Not
only can we find a good deal of pubkeys that belong to the wallet, due to pubkey
reuse there are more transactions that use the same pubkey compared to modern
wallets. This means that even when the multi-input heuristic discovers only a
few pubkeys, an attacker may learn about a lot of transactions that are received
or sent by the wallet.

Note that there are a few wallets which have a false positive rate large enough
to contain false positives. The total expected number of false positives in all
41,079 matched pubkeys is around 1605 and there are 332 match-sets which
have more than 1% chance of having one or more false positives. However, the
results are stable even when excluding these wallets.

It is not sensible to apply the shadow heuristic to legacy wallets because the
heuristic assumes that the change pubkey has never been used before. Further,
the results of the multi-input are satisfying enough so that we do not try to apply
more heuristics to the legacy wallets. It should be clear that legacy wallets have
a negative impact on privacy and users should use modern wallets instead.

5. Evaluation 22

5.3 Modern Wallets

We are mostly interested in analysing modern wallets. They represent the ma-
jority of the data, implement best practices and are what almost all users are
going to use in the future. The relatively high number of false positives has
prevented us so far from simply applying the clustering algorithm similarly to
the legacy wallet case.

Having false positives vastly increases the computing time because the heuris-
tic may involve a large number of transactions or return large sets of pubkeys,
each of which is going to be recursively fed into the heuristic. There are, for
example, pubkeys in the blockchain which occur in more than three million
transactions. In order to achieve an acceptable performance, we apply caching
to look up as few transaction as possible and use early stopping criteria to avoid
spending a lot of time on one of those popular false positives.

The effects of false positives on both precision and recall are quite diverse.
In the following example we can see how the recall changes in the face of false
positives. Assume we apply the heuristic to a true positive of the wallet. Then,
in the presence of false positives, the true recall would be greater or equal than
the recall we compute naively. On the other hand, applying the heuristic to a
false positive will very likely not find any new pubkeys of the wallet, because the
false positive is just a random key in the blockchain. This means that the recall is
1/(wallet size) and thus lowers the average recall of the wallet. Additionally, it is
very likely that we have wallets in our data that do not contain any pubkey, but
the filter match some false positives. Then we average over a wallet that really
should not be included at all and depending on the number of false positives can
lower or increase the total average over all wallets.

We are going to focus on the recall and will not compute the precision for
modern wallets. This is because the precision is not expected to decrease substan-
tially due to the design of the heuristics and because the false positive correction
would be more complicated than for the recall.

5.3.1 Dealing with false positives

We created a statistical model to deal with the false positives found in modern
wallets. The problem is that it is not possible to tell which exact pubkeys are
false positives. The only thing we know is the false positive rate of the filter
which determines the distribution of the number of false positives in the match-
set. So, we use some assumptions to be able to correct the recall if the number
of false positives is known. We then apply a Monte Carlo method to sample
the number of false positives for the whole collection and compute the corrected
recall.

As previously, let each wi ∈ W be a set of pubkeys which represents the

5. Evaluation 23

Figure 5.4: Visualization an exemplary wallet to which the assumptions apply.
A green circle represents a true positive, a red circle represents a false positive.
Grey circles represents pubkeys not contained in the match-set. The big empty
circles include the pubkeys that were found by applying a clustering algorithm
to the filled circle in the center.

i-th wallet in our dataset. However, wi is unknown – we only know the set
of pubkeys mi ∈ M that matched the corresponding filter. Due to the nature
of Bloom filters, match-sets have no false negatives and we can write mi =
wi ∪ φi, wi ∩ φi = ∅ where φi is the set of false positives of the i-th match-set.
The goal is to estimate Ph(W), but we only know M instead of W . We do not
know the set of false positives but only the distribution of its size.

Our solution is, first, to make some assumptions to be able to represent
Ph(W) as a function of M and |φ|. Then, we repeatedly sample from the prob-
ability distribution of |φi| and compute the recall.

The assumptions we are going to make are the following:

∀p ∈ mi ∀p′ ∈ φi\{p} p /∈
(
h(p′) ∪ p′

)
Assumption 1

∀p ∈ φi ∀p′ ∈ mi\{p} p /∈
(
h(p′) ∪ p′

)
Assumption 2

This is means that (1) the result of applying the heuristic to a false positive
pubkey does not contain any other match and (2) the heuristic does not find a
false positive if applied to any other match (see also Figure 5.4). These assump-
tions are justified by the fact that there are only a few false positives and they
are uniformly distributed over the complete set of pubkeys P\wi. Therefore, the
probability that they are somewhere ’close’ to each other or to a pubkey in the
true wallet wi is extremely small.

Note that the validity of the assumptions depends on the actual instantiation
of the heuristic. A heuristic that for any input simply returns all pubkeys of the
blockchain would obviously violate these assumptions. The heuristics we are

5. Evaluation 24

going to explore are quite conservative and in practice only return a very small
fraction of the possible pubkeys.

Using the assumptions we can compute the per wallet recall ρωh of wallet wi
only with mi and |φi|. We define ρ̂ωh(mi, |φi|) to compute ρωh with the known
arguments.

ρωh(wi) =
|mi|2

(|mi| − |φi|)2

(
ρωh(mi)−

|φi|
|mi|2

)
:= ρ̂ωh(mi, |φi|)

Proof.

ρωh(mi) =
1

|mi|
∑
p∈mi

ρh(p,mi)

=
1

|mi|

∑
p∈wi

ρh(p,mi) +
∑
p∈φi

| (h(p) ∪ p) ∩mi|
|mi|

=

1

|mi|

(∑
p∈wi

ρh(p,mi) +
|φi|
|mi|

)
Assumption 1

=
1

|mi|

(∑
p∈wi

(
| (h(p) ∪ p) ∩ wi|

|mi|
+
| (h(p) ∪ p) ∩ φi|

|mi|

)
+
|φi|
|mi|

)

=
1

|mi|

(∑
p∈wi

| (h(p) ∪ p) ∩ wi|
|mi|

+
|φi|
|mi|

)
Assumption 2

=
|wi|2

|mi|2
ρωh(wi) +

|φi|
|mi|2

assuming |wi| > 0

ρωh(wi) =
|mi|2

|wi|2

(
ρωh(mi)−

|φi|
|mi|2

)

At this point we want to average over all wallets to get Ph(W). Note that
we previously assumed that there is at least one true positive in wi, because
otherwise ρωh(wi) is not defined. This means that when averaging over the match-
sets M we have to skip those that only consist of false positives. We introduce
the function T ρ(M) := {mi : mi ∈M ∧ |φi| < |mi|} to select the match-sets that
do not exclusively consist of false positives.

5. Evaluation 25

Ph(W) =
1

|W |

n∑
wi∈W

ρωh(wi)

=
1

|T ρ(M)|
∑

mi∈T ρ(M)

ρ̂h(mi, |φi|)

Since |φi| are random variables and therefore also T ρ(M) we are only able to
compute a probabilistic estimate for the recall from our data.

|φi| is following a binomial distribution B with |P| number of trials, where P
is the set of all pubkeys in the blockchain. The success probability of a trial is
determined by the false positive rate of the filter ϕi. Using the pubkey extraction
method of section 3.2 the probability of having a single false positive is the filter’s
squared false positive rate. Technically, we would have to use |P| − |wi| as the
number of trials, but |wi| is negligible in relation to |P|.

|φi| ∼ B(ϕ2
i , |P|)

Fortunately, we can place upper bounds on |φi|. It is clear that |φi| can not
exceed |mi|, but we can also apply our assumptions to eventually find a tighter
bound. Every pubkey p in φi must fulfill the following conditions: No other
pubkey in mi will be returned by applying the heuristic to p and applying the
heuristic to any key in mi does not return p (see also Figure 5.4). Using the
assumptions we can find a set of false positive candidates c(mi) and use its size
as an upper bound for |φi|.

c(mi) := {p : p ∈ mi ∧ (∀p′ ∈ mi\{p} p /∈ (h(p′) ∪ p′) ∧ p′ /∈ (h(p) ∪ p))}

Thus we have for the probability distribution of |φi|:

Pr
(
|φi| = k

∣∣ |φi| ≤ |c(mi)|
)

=
Pr
(
|φi| ≤ |c(mi)|

∣∣ |φi| = k
)

Pr(|φi| = k)

P (|φi| ≤ |c(mi)|)

=
b(k, |P|, ϕ2

i)

B(|c(mi)|, |P|, ϕ2
i)

for k ≤ |c(mi)|

where b(k, n, p) the probability mass function and B(k, n, p) the cumulative den-
sity function for k successes in n Bernoulli trials with probability p.

We’ve seen that knowing the distribution of |φi| allows computing a proba-
bility distribution for the true recall. This would involve lengthy operations like
inverting the Poisson binomial distribution of T (M) and dealing with dependent
variables. Therefore, we resort to a Monte Carlo method by sampling from |φi|,
correcting the measured P and recording their distribution.

5. Evaluation 26

5.3.2 Results

Table 5.2 shows the results of applying the heuristics to modern wallets. We
correct for false positives using the method described in the previous section
by sampling false positives a thousand times, computing for each the average
recall P and taking their mean. The confidence interval is created by taking the
0.5-percentile and 99.5-percentile of P .

We compare against the baseline 1/(wallet size) which essentially means ap-
plying no heuristic such that the recall for each pubkey is 1/(wallet size). It is
apparent that the multi-input heuristic is a substantial improvement over the
baseline. The observation that it is much more effective on legacy wallets is
consistent with our previous discussions on legacy and modern wallets.

Table 5.2: Mean corrected recall and 99% confidence intervals of applying the
clustering algorithms to modern wallets and correcting for false positives. See
section 5.3.2 for a description of the heuristics.

Heuristic mean recall 99% confidence interval

1/(wallet size) 66.27% [65.83%, 66.80%]
Multi-input 68.59% [68.17%, 69.05%]
Shadow 69.16% [68.77%, 69.58%]
Consumer 69.26% [68.85%, 69.73%]
Optimal 69.34% [68.93%, 69.80%]
Best 70.94% [70.55%, 71.30%]

The change heuristics are always applied in combination with the multi-
input heuristic. This means that for every transaction that is looked up with
the multi-input heuristic, we also check if we can find the change. Instead of
applying each change heuristics only with the multi-input heuristic, we use the
following combinations:

Shadow shadow only

Consumer shadow and consumer heuristic

Optimal shadow, consumer and optimal heuristic

They are combined so that if the first heuristic is not able to determine the
change, the second heuristic is applied and so on. One can see that the shadow
heuristic is able to improve the result, but the other two change heuristics only
help in some cases. However, when we applied the consumer heuristic without the
shadow heuristic in test evaluations on smaller data, we saw a significant effect.
So, it is reasonable to assume that the minor role of the consumer heuristic in
combination with the shadow heuristic can be explained by a correlation between
wallets which create transactions with more than two outputs and wallets that

5. Evaluation 27

Figure 5.5: 99% confidence intervals for the mean recall after false positive cor-
rection of various heuristics on modern wallets. See section 5.3.2 for a description
of the heuristics.

reuse addresses. In total, the Consumer heuristic improved the result for 1027
wallets and the Optimal heuristic helped in another 1009 cases.

The ”Best” heuristic in the table refers to the result that is theoretically
possible with the multi-input heuristic and a perfect change detection. This is
the upper bound on the recall we can achieve with our heuristics.

In practice, we can obtain the best recall using all heuristics at once. It
shows that on average an attacker equipped with one pubkey will find 69.34% of
pubkeys of the wallet. The distribution of wallet sizes is exponential – almost half
of the wallets only contain one pubkey and the recall on these wallets is always
1, independent of the heuristic. Therefore, the mean recall does not appear to
be a significant improvement over multi-input alone. Figure 5.5 demonstrates
that for many wallet sizes the improvements are substantial. We can see that the
heuristics are drastically better than the 1/(wallet size) baseline and that there
is still quite some room to the upper bound. Interestingly, in contrast to legacy
wallets the recall decreases with larger wallets.

Chapter 6

Discussion

There is significant interest in blockchain analysis both from a research and com-
mercial standpoint. On the other hand, Bitcoin developers constantly develop
new ideas to increase the privacy of users. We are going to show how users can
defend themselves against the heuristics discussed in the project and how the
heuristics can be improved.

There are two further ways to enhance our clustering strategies. We use the
change heuristics – shadow, consumer and optimal – only in one direction. Given
a known pubkey, only transactions were considered where an output for the start-
ing pubkey is redeemed. What can additionally be done is to find transactions
which send to an output with the pubkey. Using the heuristic assumption it is
checked if the pubkey is the change and if so, all inputs of the transaction are
returned. By being able to step both in forward and backward direction, such
a modification can increase the recall considerably as further experiments have
shown. The problem is, however, that the heuristic assumptions are applied to
the wallet implementation that creates the transactions and we do not know
which exact implementation it is. For example, assume there is a transaction
from a legacy wallet that sends to a pubkey from a modern wallet, which we
use to apply the bidirectional shadow heuristic to. Legacy wallets do not satisfy
the shadow assumption because their change address is reused. It is likely that
the modern wallet’s pubkey will be considered change and all transaction inputs
are returned even though they belong to the legacy wallet. So, applying the
heuristic without information about the sending wallet implementation seriously
harms the precision. It is possible to mitigate that effect by trying to learn about
the wallet’s behaviour. One strategy is to test if all input pubkeys satisfy the
heuristic assumption. If there is, for example, a transaction from that wallet
without a shadow output then we would not assume a shadow output in the
original transaction and stop the heuristic from going backwards. Furthermore,
it might be possible to classify the wallet implementation by finding identifying
behaviour in the blockchain or acquiring side-channel information.

The second idea to enhance the clustering strategy is to apply the underlying
assumptions recursively to potential change. This is possible with the shadow

28

6. Discussion 29

and consumer assumption, where we can clearly conclude that a wallet does not
satisfy the assumption if one of the pubkeys is used to sign a transaction that
has no shadow output or no consumer candidate. In general, with high proba-
bility one of the outputs of a transaction is the change and the wallet software
spending the change is the same as the one creating the original transaction.
By recursively applying the assumptions, we check if the wallet implementations
that are spending the outputs have the same behaviour. If this only applies to a
single output then it is very likely the change. Assume, for example, that an at-
tacker obtains a pubkey from a modern wallet. She applies the shadow heuristic
and finds that there is an output for the pubkey and it is spent in a transaction,
which has itself two outputs, o1 and o2. She can not determine which output of
the transaction is change, because the associated pubkeys never showed up in the
blockchain before. But she can examine the transactions spending the outputs
o1 and o2 and check if there is at least one shadow output. For instance, if the
transaction redeeming o1 does not have a shadow output then o2 must have been
the change output because o1 was clearly spent from another wallet. Similarly,
the shadow or consumer assumption could have been applied further if o1 had a
shadow output.

6.1 Mitigation

Blockchain analysis clearly affects all Bitcoin wallets. But it has been confirmed
by our results that a simple measure to defend against clustering strategies is to
use a modern wallet. While it is often difficult to determine if wallet software
reuses the change address from the documentation or user interface, everybody
can check his transactions using web interfaces to the blockchain. It is often
recommended to not reuse addresses by creating a new address for each received
payment. If this is not done, an attacker can find multiple transactions when
looking up an address, learns a lower bound of the victims balance and can try
to identify all parties involved. Without doubt, it is helpful to maintain the
discipline to not reuse addresses by having wallet software that automatically
displays a new address upon receiving a transaction to the previously displayed
address. The modern wallet we discussed before, namely Android Bitcoin Wallet
4, has this feature. Still, with the current Bitcoin protocols address reuse can
not be prevented when an address is published, for example, to receive tips or
donations. Adjusting the coin selection strategy can help to reduce the negative
effects of address reuse. The coin selection could ensure that all outputs that are
addressed to the same pubkey are spent in the same transaction.

What this work has clearly shown is that individual privacy is not only af-
fected by own actions, but also by the sending and receiving parties involved.
If they would not reuse addresses, the shadow heuristic would not be able to
distinguish the change output from the intended receiver. But we have seen that

6. Discussion 30

the shadow heuristic is a substantial improvement over the multi-input heuristic
alone. This shows that address reuse is prevalent which is problematic because
the individual can not defend against that. Similarly, the consumer heuristic ex-
ploits knowledge about victims to distinguish them from the general population.
In contrast to the shadow heuristic, to mitigate the consumer heuristic it is not
enough to demand from the receiving party to follow best practice. The consumer
heuristic would be completely defeated if everybody would just create transac-
tions with one or two outputs. Where previously the receiving party would have
created a single transaction with many outputs it would now create multiple
transactions. However, due to transaction fees, creating multiple transactions
is economically disadvantageous and so the receiving party is incentivized to be
distinguishable from a consumer wallet. In conclusion, to counteract this class
of clustering strategies that try to distinguish different wallet implementations
it is necessary to make wallets behave as uniform as possible.

In section 2.5 we discussed coinjoin transactions. It is obvious that the multi-
input heuristic becomes useless when coinjoin is widespread. Unfortunately,
there is no wallet software implementing automatic coinjoins so far – only a few
toy implementations. It seems as if coinjoin is straightforward to implement and
does not really have a downside. Coinjoin does not require trust because a user
only signs if she is satisfied with the transaction, so she does not loose control over
her coins at any point. The difficulty is to find peers in a decentralized fashion
and prevent being trivially vulnerable to denial of service attacks. If, for example,
one party denies to sign the coinjoin transaction, the whole coinjoin process
has to be restarted, which involves finding peers, creating a transaction and
broadcasting it. Another obstacle is achieving resistance against sybil attacks,
which means that an attacker creates a large number of identities. Even when the
coinjoin peers are selected uniformly at random there is a chance that a victim
chooses many of the attacker’s identities, while believing that she participates in
a coinjoin with multiple different parties. The attacker can subtract his inputs
and outputs from the resulting transaction and therefore has a higher chance of
guessing the victim’s output compared to a passive blockchain observer. Also,
there is nothing in the naive protocol that prevents a peer from learning an input-
output pair while the coinjoin transaction is created. This can be simply achieved
by capturing the transaction at multiple stages. Then the peer can determine
the input-output pairs that have been added by the parties in between. The
coinshuffle protocol [RMSK14] solves this by using layered encryption when the
user adds her output. A crucial problem, especially for usability and the user
interface, is that every participant of a conjoin needs to use the same amount
of bitcoin. Otherwise, one can try to detect the output associated to an input
by finding the output with the most similar value. One proposal by Gregory
Maxwell that can solve this is called confidential transactions and aims to extend
the Bitcoin protocol to enable encryption of transaction values.

Confidential transactions also prevent the optimal change heuristic because

6. Discussion 31

a blockchain observer can not find out the output values. Until confidential
transactions is a reality, the coin selection process can prevent finding the optimal
change most of the time. It would have to be instructed to never create a
transaction with a unique output whose value is smaller than any of the input
values. This might entail that more inputs have to be added and it is therefore
in conflict with other optimization objectives like minimizing fees.

The clustering algorithms we covered in this project are not effective against
Bitcoin tumblers. Tumbling refers to the process of trading outputs for the out-
put of another party. A tumbler is usually an entity that accepts transactions
from the user and send unrelated coins back to a previously communicated ad-
dress of the user. However, at the moment tumblers surely have problems like
being trusted centralized infrastructure. Additionally, an attacker who knows
the transaction to the tumbler can observe the blockchain for some time to find
an output with a similar value going back to the victim [BNM+14]. There is
a proposal called coin swap that enables trustless peer-to-peer tumbling, but it
has not yet gained traction.

In section 3.2 we came to the conclusion that the Connection Bloom Fil-
tering vulnerability is not likely to get fixed in the near future. In principle,
everybody is free to change the hard coded false positive rate constant in a Bit-
coinJ derivative, compile and test how much it affects the bandwidth in ones
own use case. Unfortunately, the only practical option for most users who care
about their sensitive transaction data being exposed the peer-to-peer network is
to avoid wallets with Bloom filters. The type of SPV wallets not using Bloom
filters relies on central servers to forward transaction data. The central server
learns all addresses of the wallet but unlike Connection Bloom Filtering, this
is just a single known entity instead of anonymous random peers in the Bitcoin
network. In some cases the server address can be configured in the client and the
server software is freely available. This allows to have a trusted friend that runs
a server for the user. If such a friend is not available and SPV is not required
then it is preferable to use a full node implementation such as Bitcoin Core.

Chapter 7

Conclusion

Our objective for this project is to assess the effect of blockchain analysis on the
privacy of Bitcoin participants. We are able to do this with the help real wallet
data captured from the peer-to-peer network.

This thesis started out by revisiting known and introducing two new cluster-
ing heuristics. We demonstrated how Connection Bloom Filtering used in some
SPV wallets is vulnerable to leaking all public keys of a wallet including a few
false positives. Using the vulnerability we captured 37,585 filters in two months
and therefore showed that mass exploitation is feasible with low cost. While
analysing the data we learned that we have to distinguish legacy and modern
BitcoinJ wallets because their behaviours differ fundamentally. To our surprise,
7777 legacy wallets alone have received 321,825 bitcoins and there are some high
value targets, one of which received 62,560 bitcoins. Without surprise, however,
we have seen that the multi-input heuristic alone can retrieve on average 79.76%
of pubkeys belonging to the wallet and thereby seriously impact the user’s pri-
vacy.

Extracting pubkeys from filters that were generated by modern wallets always
results in some false positives, so we had to develop a statistical method to
estimate precision and recall that accounts for false positives. The results show
that even modern wallets are not able to defend users against said clustering
strategies. An attacker can learn on average 68.59% pubkeys of the wallet with
the multi-input heuristic alone, up to 69.34% by combining clustering strategies
and 70.94% in the theoretical case of having perfect change detection.

32

Bibliography

[AKR+13] Elli Androulaki, Ghassan O Karame, Marc Roeschlin, Tobias
Scherer, and Srdjan Capkun. Evaluating user privacy in bitcoin.
In Financial Cryptography and Data Security. Springer, 2013.

[BKP14] Alex Biryukov, Dmitry Khovratovich, and Ivan Pustogarov.
Deanonymisation of clients in bitcoin p2p network. In Proceedings
of the 2014 Conference on Computer and Communications Security
(CCS). ACM, 2014.

[Blo70] Burton H Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 1970.

[BNM+14] Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark,
Joshua A Kroll, and Edward W Felten. Mixcoin: Anonymity for
bitcoin with accountable mixes. In Financial Cryptography and Data
Security. Springer, 2014.

[GCKG14] Arthur Gervais, Srdjan Capkun, Ghassan O Karame, and Damian
Gruber. On the privacy provisions of bloom filters in lightweight bit-
coin clients. In Computer Security Applications Conference (CSAC).
ACM, 2014.

[HC12] Mike Hearn and Matt Corallo. Bip 0037: Connection bloom filtering,
2012. https://github.com/bitcoin/bips. [Online; accessed July
29th, 2015].

[KKM14] Philip Koshy, Diana Koshy, and Patrick McDaniel. An analysis of
anonymity in bitcoin using p2p network traffic. Springer, 2014.

[MPJ+13] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill
Levchenko, Damon McCoy, Geoffrey M Voelker, and Stefan Savage.
A fistful of bitcoins: characterizing payments among men with no
names. In Internet measurement conference (IMC). ACM, 2013.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
2008. https://bitcoin.org/bitcoin.pdf. [Online; accessed July
29th, 2015].

[OKH13] Micha Ober, Stefan Katzenbeisser, and Kay Hamacher. Structure
and anonymity of the bitcoin transaction graph. Future internet,
2013.

33

https://github.com/bitcoin/bips
https://bitcoin.org/bitcoin.pdf

BIBLIOGRAPHY 34

[RMSK14] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. Coinshuffle:
Practical decentralized coin mixing for bitcoin. In European Sympo-
sium on Research in Computer Security (ESORICS). Springer, 2014.

[SMZ14] Michele Spagnuolo, Federico Maggi, and Stefano Zanero. Bitiodine:
Extracting intelligence from the bitcoin network. In Financial Cryp-
tography and Data Security. Springer, 2014.

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Bitcoin Transactions
	1.2 Blockchain Privacy
	1.3 Related Work

	2 Address Clustering
	2.1 Multi-Input Heuristic
	2.2 Shadow Heuristic
	2.3 Consumer Heuristic
	2.4 Optimal Change Heuristic
	2.5 Wallets

	3 Bloom Filter Attack
	3.1 Bloom Filters
	3.2 Vulnerability
	3.3 Filter Collection

	4 Data Preparation
	4.1 Duplicate Detection

	5 Evaluation
	5.1 Metrics
	5.2 Legacy Wallets
	5.3 Modern Wallets
	5.3.1 Dealing with false positives
	5.3.2 Results

	6 Discussion
	6.1 Mitigation

	7 Conclusion

