
Mass Adoption,
But Decentralized

 Jonas Nick
nickler.ninja

https://nickler.ninja/

Blockstream Research

research focus:
signature schemes
scripting languages (Miniscript, Simplicity)

for the Bitcoin protocol, wallets, Elements
sidechain, Lightning Network, etc...
and contributions to open source projects like
Bitcoin Core, libsecp, rust-bitcoin, minimint and
many more

Is this Bitcoin?

What is Bitcoin?

Resists powerful actors through decentralization

I hope it's obvious it was only the centrally controlled
nature of those systems that doomed them. I think this
is the first time we're trying a decentralized, non-trust-

based system.
- Satoshi

Running a Bitcoin Node

Bitcoin is a protocol that is verified by a network of
full nodes
nodes are in consensus about the history of
transactions determined by protocol rules and
proof-of-work
BUT: creating transactions doesn't work for
everyone, since the throughput is limited

~10 min1MWU 1MWU ~10 min 1MWU

MWU = Mega Weight Unit

Case Study: Blocksize Increase

Bitcoin governance emerges through the software
users run on their computers
hence, could increase size limit of blocks
but this increases cost to run full node

After an astounding victory, the small block narrative, that
end users had to agree to protocol rule changes, was finally

seen as compelling.
 - Jonathan Bier, The Blocksize War

Instead, make most
of existing

constraints:
The UpgradeTaproot

https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki

Bitcoin Today

Alice Bob

bc1q... address

bitcoin

Bitcoin after Taproot
Upgrade

Alice Bob

bc1p... address

bitcoin

with Taproot

Schnorr Sigs in Taproot

Authorization of Transactions:
In blockchain: ECDSA Schnorr signature of Alice's
public key

Alice Charlie

bitcoin

Schnorr Batch Verification

without: full node must verify every signature in
blockchain individually
with: full node verfies batch of signatures at once
example batch = 10,000: verification is twice as fast
therefore, full node cost reduced

key requirement for principle of resistance
status: proof-of-concept existsimplementation

http://github.com/bitcoin-core/secp256k1/pull/760
https://github.com/bitcoin-core/secp256k1/pull/760
http://github.com/bitcoin-core/secp256k1/pull/760

Still, on-chain transactions
don't scale

Layered Scaling

Idea: use Bitcoin as settlement layer, build protocols
on top with different trust assumptions

Layer 1: Bitcoin
Layer 2: Lightning, Sidechains, ...

Taproot ½ Sig Agg Sig Agg

Batch Verify Key Agg Adaptor Sig

on-chain

off-chain
primitives

Layer 2
(Multiparty-)

Payment Channels Sidechains Federated
E-Cash

Principles

usability for payments
(on-chain and layer 2)

surveillance resistance

security of
wallets

resilience

Indistinguishability

transactions that are part of complex protocols
look the same as simple payments to an observer

makes spying with blockchain more
difficult
layer 2 (L2) and multisig cheaper

Transaction

Multisig?

Normal Payment? Sidechain?

Lightning?

Taproot, in short

example: coin that can be spent by

"Alice immediately or Bob after 1000 blocks"
or(Alice,and(Bob, older(1000))

taproot allows hiding unexecuted branches
if Alice spends the coin, it looks like an ordinary
payment

Taproot ½ Sig Agg Sig Agg

Batch Verify Key Agg Adaptor Sig

on-chain

off-chain
primitives

Layer 2
(Multiparty-)

Payment Channels Sidechains Federated
E-Cash

Multi Sig + Key Aggregation

example: Alice, Bob and Charlie have a 2-of-3
multisig wallet
without: All three keys and two signatures must
be written to the chain
with:

 one aggregate key
cooperatively create single signature

therefore, indistinguishable from normal
transactions

A B C

ABC

MuSig vs MuSig2 vs FROST

MuSig: n-of-n multisignatures*
status: replaced by MuSig2

: n-of-n multisignatures*
needs less communication

in particular useful in Lightning routing
status: in progress

MuSig2

implementation & spec.
: m-of-n threshold signaturesFROST

example: -75% cost of 11-of-15 federation
interactive setup: key shares of other parties
need to be backed up securely
status: implementation of prototype in progress

*t-of-n with taproot in best case

https://medium.com/blockstream/musig2-simple-two-round-schnorr-multisignatures-bf9582e99295
https://github.com/ElementsProject/secp256k1-zkp/pull/131#issuecomment-894011686
https://eprint.iacr.org/2020/852.pdf
http://murchandamus.medium.com/2-of-3-multisig-inputs-using-pay-to-taproot-d5faf2312ba3

MuSig2:
2-of-2 example

R ,R1
′

1
′′ R ,R2

′
2
′′

s1 s2

Need to keep state
between rounds. How

does that work in
hardware wallets?

Taproot ½ Sig Agg Sig Agg

Batch Verify Key Agg Adaptor Sig

on-chain

off-chain
primitives

Layer 2
(Multiparty-)

Payment Channels Sidechains Federated
E-Cash

Lightning:
HTLC PTLC HTLC PTLC

Lightning Network

Hash(x)

x <- random

Hash(x)

HTLC: Hash Timelocked Contract, visible on-chain,
same on every hop of route

Sender Receiver

Hash(x)

xx

Adaptor Signatures

example: atomic swaps like Lightning payment,
DLCs, peerswap
without: requires on-chain hash
with: instead, off-chain adaptor signature

PTLC: Point Timelocked Contract

Lightning:
HTLC PTLC HTLC PTLC

Taproot ½ Sig Agg Sig Agg

Batch Verify Key Agg Adaptor Sig

on-chain

off-chain
primitives

Layer 2
(Multiparty-)

Payment Channels Sidechains Federated
E-Cash

Schnorr Half Aggregation

with: blocks contain (at least) one signature per
spent coin
with: contain a "half"-aggregate signature, that is
half as big as the sum of individual sigs

non-interactive
example: 10 half-aggregate signatures take same
space as 6 ordinary sigs
therefore, more transactions per block
status: , requires softforkresearch

Aggregate(sig ,… , sig) →1 n sig

https://github.com/ElementsProject/cross-input-aggregation/blob/master/slides/2021-Q2-halfagg-impl.org
http://github.com/ElementsProject/cross-input-aggregation/blob/master/slides/2021-Q2-halfagg-impl.org

Taproot ½ Sig Agg Sig Agg

Batch Verify Key Agg Adaptor Sig

on-chain

off-chain
primitives

Layer 2
(Multiparty-)

Payment Channels Sidechains Federated
E-Cash

Schnorr Full Aggregation

without: transactions contain (at least) one
signature per spent coin
with: transactions contain exactly one, aggregate
sig
size same as ordinary Schnorr signature
signing is interactive
smaller transactions, incentive for CoinJoin
status: research, requires softfork

Aggregate Size

Aggregate Weight

Conclusion

nickler.ninja/slides/
unclear what trade-offs are going to be made for
mass-adoption
staying resilient takes precedence

surveillance resistance
usability for payments
wallet security

indistinguishability
key aggregation: aggregation in multisig wallet
sig aggregation: aggregation across wallets

https://nickler.ninja/slides/2021-zitadelle.pdf

Conclusion

Get involved
bitcoinops.org
bitcoin-dev mailing list
lightning-dev mailing list
bitcoinproblems.org

https://bitcoinops.org/
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev
https://lists.linuxfoundation.org/mailman/listinfo/lightning-dev
http://bitcoinproblems.org/

Summary
Protocol Application Benefits Status

Batch verify Faster verification Full node ressources Prototype implementation

TR Merkle tree Hidden script
paths

Smaller txs, surveillance
resistance

-

MuSig2 n-of-n multisig Smaller txs, surveillence
resistance

Specification in progress

FROST t-of-n multisig " Implementation in progress

Recursive Key
Agg

Multisig of multisig L2 tricks Research

Adaptor Sig Swaps, HTLCs Useful for L2, surveillance
resistance

Specification in progress

Blind Sigs Blind swap Surveillance resistance Applications where?

Thresh.BlindSigs Federated E-cash L2, Surveillance resistance Implementation in progress

Half Agg All txs Smaller txs Research, requires softfork

Full Agg All txs Smaller txs Research, requires softfork

