Shielded CSV ©

Private and Efficient
Client-Side Validation

Jonas Nick Liam Eagen Robin Linus

,‘ Alpen . ZeroSync

eToN

I"' - t\

.1l Blockstream
- ¢

¢~-¢/

-

https://shieldedcsv.org/

Summary

"Layer 1" ‘ Transaction Validation| | 9

"Layer 0.5" Blockchain (PoW, ...) |
Shielded CSV is a transaction protocol to create an L1 on top of
a blockchain that allows embedding arbitrary data (e.g., Bitcoin).
It inherits double-spend security from the underlying
blockchain.
The amount of data embedded into the blockchain is 64 bytes.
Coins and coin proofs are sent directly to the receiver through a
private one-way communication channel.

Coin proofs are succinct.
Shielded CSV is fully private.

Motivation

1. A more efficient design for private cryptocurrencies

e ZK proofs are not on the blockchain and are not
verified by full nodes. Can be built on existing
blockchain.

2. Improve privacy of Bitcoin.

e Use Bitcoin as the underlying blockchain. Requires
bridge (BitVM, one-way peg, federated peg, ...).

Toy CSV: & |ssuance

Transaction 1

— vy 2sat

On-Chain

Off-Chain Sign("l issue 10 &-coins in transaction 1, output 1.

Redeemable for physical frogs.")

-

I Transaction 1
I8y

w [[ros

the Issuer

Toy CSV: Transaction

Transaction 1 Transaction 2

lvy: 1 sat
VY 2 sat I Roy: 1 sat

On-Chain
lOff-Chain
-
I Transaction 1 Transaction 2 @
I8y aVa
vy Roy

the Issuer the Receiver

Comparing CSV

Privacy Coin Proof Size Blockchain Space

RGB

Taproot Assets
Intmax?2
Shielded CSV

What is CSV really?

Insight: Transaction validation does not
need to be part of the consensus rules.

3 Why validation is an optional optimization

Given only proof-of-publication, and a consensus on the order of transactions, can we make a succesful
crypto-coin system? Surprisingly, the answere Is yes!

Suppose the rules of Bitcoin allowed blocks to contain Invalid transactions,

7, 2013

... then transactions are only validated "client-side" and
simply ignored if they are invalid.

https://petertodd.org/2013/disentangling-crypto-coin-mining
https://petertodd.org/2013/disentangling-crypto-coin-mining

Taking CSV seriously

1. Derive short piece of data ("nullifier") from the

CSV transaction.
2. Post nullifier to blockchain to prevent double-

spending.

e Toy CSV: nullifier is Bitcoin tx
e Shielded CSV: nullifier is 64-byte blob

. - . - :
s
e T v G

R ———————
e

SSIEREe dontralt Schnorr
@ecregation

”;Orgs
publishing
ng ht Cl I ' ﬁ" : *,:;::_'z-f

VoWt state
tiation

pool

ent Channels

<REDACTED>

MADNESS WAITS

Communication C

Shielded CSV: Definitions

CSV Transaction: similar to Bitcoin

lvy: 3 &
transactions. Consist of inputs and outputs. I Roy. 7 &

Coin: Tx output. Consists of amount & public key.

CoinID: Tx hash & coin index. Tx inputs contain CoinlIDs.
Coin Proof: History of transactions connecting to issuance
transactions.

@

-y

Sally the
Sender

>

Coin, Coin Proof

0y

Roy the
Receiver

Verify:
All txs in the coin proof
are valid.

Preventing Double Spending

@ Nullifier := (CoinID, TxHash'

\

-y

lEmbed nullifier

Blockchain
Prlci;‘ess CoinlID TxHash| Process nullifiers:
nullifiers
! <some CoinlD> |<.. > lgnore nullifiers whose
) inlD is al in th
* <other CoinlD> < > CoinID is already in the
3 KV-store.

wVa nullifier key-value store

Preventing Double Spending

,fﬁ % | CoiniD TxHash
& @ .
< Al <some CoinID> |<...>
| ' ' f . her CoinlD
< > <. .. >
Sally the Coin, Coin Proo Roy the other Coin
Sender Receiver nullifier key-value store

Verify Coin Proof:

1. All txs in the coin proof are valid.

2. Every coin spent in the coin proof must be present in the

KV-store and the tx hashes must match.

Preventing Double Spending

This design does prevent double
spending with only a small nullifier!

e Problem: Insecure! Anyone can nullify any coin.
= Solution: Add signature to nullifier.
e Inefficiency: One nullifier per spent coin.

= Solution: Introduce "accounts", a special type of TXO.
= Result: one nullifier per account state update that can spend
an arbitrary number of coins.

e Problem: Posting nullifiers requires a dedicated on-chain tx.

= Solution: Publishers collect nullifiers and post them all at
once with a single on-chain tx. Anyone can become a
publisher.

Towards 64-bytes Nullifiers

Nullifier := (CoinID, TxHash
Accounts (insecure, one nullifier per coin)
Vﬁullifier := (Nullifier PubKey, TxHasl
Signature (insecure, one nullifier per tx)
Nullifier := (Nullifier PubKey, TxHash, Signature
Sign-To-Contract 128 bytes
Nullifier := (Nullifier PubKey, Signature
Signature Half-Aggregation 96 bytes
AggNullifier := (Nullifier PubKeys, AggSi

64 bytes

Block i+ 2

Block i Block i+ 1
| AsgNullifier [|
aggregates &
publishes reads & verifies
~ aggregate sig
v

g

Nullifier P - &
) Coin, Coin Proof o <.
<..> <...

kﬁﬂ
Tx := (AcctState, Coins,
NewAcctState, NewCoins)

Succinct & Private Coin Proofs

e Problem: Coin proof includes all ancestor transactions
involved in creating the coin (size?, privacy?)

e Solution: Wrap the protocol in a "Proof-Carrying Data"
(PCD) scheme

Proof-Carrying Data (PCD) [2010]

Local Input Local Input

Output, Tty Output, 13

> >
= 1—\
/ Output, Tt,

- OUtpuUt, TT;
y N

T

Local Input
e TT;: proof that the entire preceding computation graph is correct.

= Size and Verification time independent of graph size.
= Zero-Knowledge for incoming inputs and and outputs.

e PCD can be instantiated with recursive SNARKSs or Folding
schemes.

Proof-Carrying Data (PCD) [2010]

Local Input Local Input

!

Output, Tty S Output, 13 .
Output, Tt
- OUtpUt, TT; ;)
v 8
Local Input

— Shielded CSV transaction

Output: Account state or coin

Local Input: Account update proofs, etc
i: Coin proof

Shielded CSV Coin Proofs

Local Input
AcctState, 1, -~ AcctState, 1t;3

) lk'ﬁi\@ \>
/ Coin, 1,

Coin, T, @
. .

wmva

e Coin proof 1ty proves to Roy that all transactions are correct and
have been nullified

® succinct and ZK
e Why PCD? Framework abstracts away some of the complexity.

Shielded CSV is ...

e an instantiation of PCD,
e the definition of correct computation in PCD,

= we specify this in Rust,
e aspec for how the nullifier key-value store is updated.

This was just a tiny glimpse of
the paper

Blockchain reorganizations

"Trustless" Publishing & Fees

Security definitions of the primitives (accumulators, etc.)
t-of-n Shared Accounts

Atomic Swaps

Wallet State

Nullifier Accumulator based on Merkle Tree of Merkle
LIEEES

Future Work

More complete specification & test vectors
Instantiation of primitives

BitVM (?) Bridging

Communication channels / UX

Other drawbacks of CSV paradigm?
"mempool"

Efficient timelocks

Payment channels

Light clients

Scriptable spending policies

Shield

Cryptocur: ies allow mutually distrustir) tra eta : over the i 1et
ithout relying on a trusted third party.

Bitcoin, the first cryptocurrenc ieved t throug, col us 0 establish consensus

about an ordered t acti is r ; on to be br led and
. Furthermore,
ed permanently,

increasing storage re
support:

requirements.
’SV) is a paradigm that addr
n consensus rules. This appri

ducing communica

SV protocol, which writes significa
compared to a blockchain t tion and succinet coin proofs.
In this w Ll\. we i hielded C which imprc
f on that offe
traditional private cryptocurrency d
ifier, to be written to the bloc
s only need to perform a
nd icati ofs for Shielc / recei is independent of
2 c .ddiug privacy to Bitcoin at a rat
nd, provide T ! ate \)udL_ ng mechanism to the blocke
using the Proof gD (PCD) abst then ¢

https://shieldedcsv.org/

