
Shielded CSV 🛡
Private and Efficient

Client-Side Validation

Jonas Nick Liam Eagen Robin Linus

shieldedcsv.org

https://shieldedcsv.org/

Shielded CSV is a transaction protocol to create an L1 on top of
a blockchain that allows embedding arbitrary data (e.g., Bitcoin).
It inherits double-spend security from the underlying
blockchain.
The amount of data embedded into the blockchain is 64 bytes.
Coins and coin proofs are sent directly to the receiver through a
private one-way communication channel.
Coin proofs are succinct.
Shielded CSV is fully private.

Summary

Blockchain (PoW, ...)
Transaction Validation

"Layer 0.5"
"Layer 1" 🛡

Motivation

1. A more efficient design for private cryptocurrencies
ZK proofs are not on the blockchain and are not
verified by full nodes. Can be built on existing
blockchain.

2. Improve privacy of Bitcoin.
Use Bitcoin as the underlying blockchain. Requires
bridge (BitVM, one-way peg, federated peg, ...).

Ivy: 2 sat

Toy CSV: 🐸 Issuance

�

Transaction 1

Ivy
the Issuer

On-Chain
Off-Chain

Ivy: 10 🐸

Transaction 1

Sign("I issue 10 🐸-coins in transaction 1, output 1.
Redeemable for physical frogs.")

Ivy: 2 sat

Toy CSV: Transaction

�

Transaction 1

Ivy
the Issuer

On-Chain
Off-Chain

 Ivy: 1 sat
 Roy: 1 sat

Transaction 2

Roy
the Receiver

�
Ivy: 10 🐸

Transaction 1

 Ivy: 3 🐸
 Roy: 7 🐸

Transaction 2

"Coin Proof":

Transaction graph connecting Roy's output
to an issuance transaction

Comparing CSV

What is CSV really?

, 2013petertodd.org

Insight: Transaction validation does not
need to be part of the consensus rules.

... then transactions are only validated "client-side" and
simply ignored if they are invalid.

https://petertodd.org/2013/disentangling-crypto-coin-mining
https://petertodd.org/2013/disentangling-crypto-coin-mining

1. Derive short piece of data ("nullifier") from the
CSV transaction.

2. Post nullifier to blockchain to prevent double-
spending.

Taking CSV seriously

Toy CSV: nullifier is Bitcoin tx
Shielded CSV: nullifier is 64-byte blob

Post-quantum

non-interactive
publishing prunable wallet state

PCD

Payment Channels

MEVil

TS-Accumulator

InstantiationLight clients

Reorgs

Sign-to-Contract Schnorr
Half-Aggregation

<REDACTED>
█ █ █ █ █ █ █ █

ᗰᗩᗪᑎᕮᔕᔕ ᗯᗩITᔕ

64-byte nullifier

Private and Efficient CSV

Communication Channels

Client-Side Validation
Model

Accounts

mempool

🚢

Shielded CSV: Definitions

CSV Transaction: similar to Bitcoin
transactions. Consist of inputs and outputs.

� �
Sally the
Sender

Roy the
Receiver

Coin, Coin Proof

Verify:
All txs in the coin proof
are valid.

 Ivy: 3 🐸
 Roy: 7 🐸

Coin: Tx output. Consists of amount & public key.
CoinID: Tx hash & coin index. Tx inputs contain CoinIDs.
Coin Proof: History of transactions connecting to issuance
transactions.

Preventing Double Spending

Nullifier := (CoinID, TxHash)

�

�

Blockchain

CoinID TxHash
<some CoinID> <...>

<other CoinID> <...>

nullifier key-value store

Embed nullifier

Process
nullifiers

Process nullifiers:
Ignore nullifiers whose
CoinID is already in the
KV-store.

(<some CoinID>, <some TxHash>)
IGNORED by Roy

Preventing Double Spending

� �
Sally the
Sender

Roy the
Receiver

Coin, Coin Proof

Verify Coin Proof:

1. All txs in the coin proof are valid.
2. Every coin spent in the coin proof must be present in the

KV-store and the tx hashes must match.

CoinID TxHash
<some CoinID> <...>

<other CoinID> <...>

nullifier key-value store

Preventing Double Spending

This design does prevent double
spending with only a small nullifier!

Problem: Insecure! Anyone can nullify any coin.
Solution: Add signature to nullifier.

Inefficiency: One nullifier per spent coin.
Solution: Introduce "accounts", a special type of TXO.
Result: one nullifier per account state update that can spend
an arbitrary number of coins.

Problem: Posting nullifiers requires a dedicated on-chain tx.
Solution: Publishers collect nullifiers and post them all at
once with a single on-chain tx. Anyone can become a
publisher.

Towards 64-bytes Nullifiers

AggNullifier := (Nullifier_PubKeys, AggSi

Nullifier := (Nullifier_PubKey, Signature

Nullifier := (Nullifier_PubKey, TxHash, Signature

Nullifier := (Nullifier_PubKey, TxHash

Nullifier := (CoinID, TxHash

(insecure, one nullifier per coin)

(insecure, one nullifier per tx)

128 bytes

96 bytes

64 bytes

Accounts

Signature

Sign-To-Contract

Signature Half-Aggregation

�

�
Coin, Coin Proof

👷

Tx := (AcctState, Coins,
 NewAcctState, NewCoins)

Nullifier

AggNullifier
...

Block i + 1Block i Block i + 2

aggregates &
publishes reads & verifies

aggregate sig

<...> <...>
<...> <...>

Problem: Coin proof includes all ancestor transactions
involved in creating the coin (size?, privacy?)
Solution: Wrap the protocol in a "Proof-Carrying Data"
(PCD) scheme

Succinct & Private Coin Proofs

Proof-Carrying Data (PCD) [2010]

πᵢ: proof that the entire preceding computation graph is correct.
Size and Verification time independent of graph size.
Zero-Knowledge for incoming inputs and and outputs.

PCD can be instantiated with recursive SNARKs or Folding
schemes.

🖥

🖥

🖥

Local Input

Local Input

Local Input

Output

Output

Output

Output

, π₁

, π₂

, π₃

, π₄

Proof-Carrying Data (PCD) [2010]

🖥

🖥

🖥

Local Input

Local Input

Local Input

Output

Output

Output

Output

, π₁

, π₂

, π₃

, π₄

🖥 : Shielded CSV transaction
Output: Account state or coin
Local Input: Account update proofs, etc
πᵢ: Coin proof

Shielded CSV Coin Proofs

�

Local Input

AcctState

Coin

AcctState

Coin

, π₁

, π₂

, π₃

, π₄

�

Coin proof π₄ proves to Roy that all transactions are correct and
have been nullified

succinct and ZK
Why PCD? Framework abstracts away some of the complexity.

Shielded CSV is ...

an instantiation of PCD,
the definition of correct computation in PCD,

we specify this in Rust,
a spec for how the nullifier key-value store is updated.

This was just a tiny glimpse of
the paper

Blockchain reorganizations
"Trustless" Publishing & Fees
Security definitions of the primitives (accumulators, etc.)
t-of-n Shared Accounts
Atomic Swaps
Wallet State
Nullifier Accumulator based on Merkle Tree of Merkle
Trees
...

Future Work

More complete specification & test vectors
Instantiation of primitives
BitVM (?) Bridging
Communication channels / UX
Other drawbacks of CSV paradigm?
"mempool"
Efficient timelocks
Payment channels
Light clients
Scriptable spending policies
...

shieldedcsv.org

https://shieldedcsv.org/

