
-

Why There’s No ZK in 
Bitcoin

The Missing Pieces

2024-05-23 ZKProof 6
Jonas Nick

@n1ckler, jonas@n-ck.net



Bitcoin is a Social System



> I've been working on a new electronic cash system that's fully

> peer-to-peer, with no trusted third party.

mempool.space

https://mempool.space


> Participants can be anonymous.



1. Today’s ecosystem does not fully realize Bitcoin’s ideals
2. Technology is evolving

➤ How should the Bitcoin protocol evolve?



What can ZK and SNARKs in Bitcoin do?

● Improve privacy
○ Homomorphic commitment to values (elements, 2013)
○ Obfuscate transactions via linkable ring signatures (monero, 2013)
○ Private transactions (halo2, 2020)

● Improve transaction throughput
○ Bridge to alternative systems (coinwitness, 2014)

https://bitcointalk.org/index.php?topic=305791.0.
https://github.com/monero-project/research-lab/blob/master/whitepaper/whitepaper.pdf
https://zcash.github.io/halo2/
https://bitcointalk.org/index.php?topic=277389.0


Why is it not implemented 
yet?

Because Bitcoin is difficult to change, and that’s good.



What can we do without 
changing Bitcoin?



Bitcoin Transaction Basics

script
witness

10 ₿
script

Transaction

Input Output

script
witness

3 ₿
script

7 ₿
script

● Transaction valid only if it provides a witness that makes the script 
succeed.

● Bitcoin script is a sequence of opcodes that manipulate a stack.
● Example script: `<some_pubkey> OP_CHECKSIG` fails if the 

topmost stack element is not a valid signature for the pubkey.



Bitcoin Script

● What it can do:
○ Rearrange the stack, check for equality, branch on stack values
○ Limited arithmetic on 32-bit numbers: add and subtract
○ Hash and check ECDSA/Schnorr signatures

● What it cannot do:
○ No loops, gotos, recursion
○ No bitwise operations
○ No arithmetic opcodes to do multiplication or division
○ No concatenation of elements on the stack
○ No way to introspect transactions, or to carry over state from output to 

output
● Some capabilities were disabled by Satoshi



Can you verify a SNARK in Bitcoin script?

● Yes, can verify any computation in Bitcoin script…
○ despite not being “Turing-complete”.

● …but no, verifier would result in much larger script than the 4MB we 
can put in a block
○ 254 bit integer multiplication is 77kB
○ Checking merkle proofs very, very expensive without concatenation
○ No abstraction in script, need to unroll

● Why not simply add more powerful opcodes to the Bitcoin protocol?

https://github.com/BitVM/BitVM/blob/main/src/bigint/u29x9.rs


Changing Bitcoin is hard

● All participants need to follow exactly the same protocol rules
○ No central decision maker
○ Any change has tradeoffs and has opposition
○ No way to determine rough consensus

● Any update risks chain split
● Most recent updates: SegWit (2017), Taproot (2021)



Taproot 🥕
● Why successful?

○ Low-hanging fruits: obvious improvements, cleanups & bugfixes
○ No change in existing security assumptions

● Relevant changes
○ Removed script limits
○ Added upgrade mechanisms
○ Reduces script that needs to be revealed

script A script B

Merkle root
For `script A OR script B`,
put only Merkle root in output.

At spending time 
reveal either script 
A or script B and 
Merkle proof.



OP_SNARK

● Add dedicated opcode that verifies SNARK?
● Contrast to Taproot:

○ Huge design space
■ Will never be able to remove the opcode from the protocol

○ Very complex
■ Taproot only about ~1600 loc (without tests)



Make Script More Powerful?

● Add simple opcodes that allows to write SNARK verifiers in script
● Downside: script is difficult to write and reason about

Alternative: add language that is designed for blockchains

● Simplicity is deliberately not Turing-complete, was built 
for easy static analysis and formal verification.

● But would be relatively large change to Bitcoin



Re-enable OP_CAT? 😸
● Existed in original Bitcoin, but disabled by Satoshi
● [ 0xBE, 0xEF ] -> [ 0xBEEF ]
● Surprisingly powerful

○ Transaction introspection and state
○ Allows Merkle proof verification
○ … and more

● Does this help to verify SNARKs in script? Yes, somewhat
● Status unclear
● But potential path for more simple opcodes (“Great Script 

Restoration”)

https://github.com/bitcoin/bips/blob/master/bip-0347.mediawiki#motivation
https://www.youtube.com/watch?v=gQBId8ZiZfw
https://www.youtube.com/watch?v=gQBId8ZiZfw


Hardware Requirements

● Users must be able to verify Bitcoin’s rules; don’t make that more 
expensive!

● Hard limits
○ 4 MB block per 10 minutes
○ At most 80,000 signature verifications 

per block
● On average

○ 7k to 10k signature verifications per 
block

○ 90th percentile block verification time 
on my node: 3.2 seconds



Hardware Requirements

● Hardware “wallets” for long-term storage and signing
● Example: ESP32 SoC with 240 MHz dual core and 520KiB memory



What is the maximum acceptable time a user can wait until the 
signing device (HWW, mobile phone, ...) produced the proof?



There are plenty of applications of SNARKs 
that do not require a protocol change



Chain State Proofs

● Proof that a given byte array is the block hash of a valid blockchain
● Applications

○ Reduce resources required to verify the blockchain
○ Bridging with BitVM

● ZeroSync team generated proof for weaker “header chain” statement
○ Only the headers of blocks are proven to be correct, not the transactions
○ ~840,000 block headers of 80 bytes, double SHA256 each header
○ Using STARKs, this cost about $4000 to prove (2023) and takes ~3 

seconds to verify in my browser.

https://zerosync.org/


Header chain proof requires assumption that blockchain 
with the most proof-of-work is valid.

contains 
invalid tx

valid chain

invalid chain
More PoW: 
preferred over 
valid chain.

Expensive to create, but maybe worth to the attacker.



Full Chain State Proof

● Requires proving all of Bitcoin’s protocol rules:
○ ECDSA & Schnorrsigs over secp256k1

■ 30M per month, 2.5B in total
○ SHA256

■ > 7GB per month, > 650 GB in total
■ more likely 2-3 times that

○ Bug-for-bug compatibility with the C++ “specification” (see 
libbitcoinkernel)

https://github.com/bitcoin/bitcoin/issues/27587


BitVM

● In theory: makes verifying any computation possible today
● Overcomes maximum Script size limitation using

○ Taproot Merkle tree of scripts
○ key-value store that can be accessed across individual scripts

● KV store requires fraud proofs
○ If prover posts invalid claim or uses inconsistent store, someone can 

make a transaction to take the prover’s funds.



Summary

● Bitcoin faces challenges, but changing Bitcoin remains hard (and that 
is good)

● SNARKs have potential to address Bitcoin’s problems
● Most plausible ways to get SNARKs in Bitcoin, short to midterm 

(imho):
1. BitVM (needs R&D)
2. Re-enable opcodes (needs rough consensus)

● Either way, there are numerous exciting opportunities to make this 
technology practical and develop innovative and useful applications!



-

Slides at nickler.ninja/slides

Thanks to Andrew Poelstra, @LiamEagen, @Robin_Linus, 
@0xB10C

2024-05-23 ZKProof 6
Jonas Nick

@n1ckler, jonas@n-ck.net

http://nickler.ninja/slides
https://www.wpsoftware.net/andrew/blog/
https://x.com/liameagen
https://x.com/robin_linus
https://x.com/0xB10C

